

Aaron Naeger
TEMPO Deputy Program Applications Lead
NASA MSFC

ARSET Training

Tuesday, October 11, 2022

TEMPO Quick Facts

- □ Capability to distinguish between boundary layer from free tropospheric and stratospheric O₃
- ☐ TEMPO instrument integration with host satellite, Intelsat 40e, was recently completed in June.
- ☐ Launch is expected early March 2023 (target March 1) to 91°W longitude (Baseline mission: 20 months).
- Member of a geostationary satellite constellation for observing pollution over Northern Hemisphere

- NASA's first Earth Venture Instrument (EVI) selected in 2012 & first host payload
- □ TEMPO will observe atmospheric pollution every daylight hour at high spatial resolution from Geostationary Earth Orbit.
- UV/Visible grating spectrometer is sensitive to policy-relevant pollutants (NO₂, SO₂, O₃) and aerosols.

Measuring Trace Gases from TEMPO

- ☐ TEMPO will measure the intensity of backscattered UV and visible radiation which is influenced by surface and atmospheric conditions.
- ☐ Retrieval algorithms will derive slant column densities (SCDs) from measured radiances in known trace gas absorption spectral windows.
- ☐ Trace gas column density is the total number of molecules of a given gas along the light path.
- ☐ SCD is converted to vertical column density to provide information on a trace gas right above the TEMPO footprint.

TEMPO Data Products

Level	Product	Key Outputs	Res km ² *	Freq/Size
L0	Digital counts	Reconstructed digital counts	2.0 x 4.75	Daily/hourly
L1-b	irradiance	Calibrated & quality flags		daily
	radiance	Geolocated, calibrated, viewing	2.0 x 4.75	Hourly, granule
L2 🌟	Cloud	Cloud fraction, cloud pressure	2.0 x 4.75	Hourly, granule
	O ₃ (Ozone) profile	O3 profile, tropospheric & 0-2 km O3 column, errors	8.0 x 4.75 (TBD)	Hourly, granule
	Total O ₃	Total O3, Aerosol Index, cloud fraction	2.0 x 4.75	Hourly, granule
*	NO ₂ (Nitrogen Dioxide)	SCD, strat./trop. VCD, uncertainties	2.0 x 4.75	Hourly, granule
*	HCHO (Formaldehyde)		2.0 x 4.75	Hourly, granule
	C ₂ H ₂ O ₂ (Glyoxal)	SOD, VOD, GIIOIS	2.0 x 4.75	Hourly, granule
	H ₂ O (Water Vapor)		2.0 x 4.75	Hourly, granule
	BrO (Bromine)		2.0 x 4.75	Hourly, granule
*	SO ₂ (Sulfur Dioxide)	SCD, VCD (PBL,TRL,TRM,TRU,STL)	2.0 x 4.75	Hourly, granule
*	Aerosol	AAI, UVAOD, UVSSA, AOCH, VISAOD	8.0 x 4.75	Hourly, granule
	TEMPO/GOES-R Synergistic	Radiance, aerosol, cloud & mask, fire/hotspot, lightning, snow/ice, etc.	2.0 x 4.75	Hourly, granule
L3	Gridded L2	Same as L2	2 x 2 (TBD)	Hourly, scan
L4	UVB	UV irradiance, erythemal irradiance, UVI	TBD	Hourly, scan

★ Proposed near real-time products (latency ~2-3 hours)

** Center of Field of Regard

SCD: Slant Column Density

VCD: Vertical Column

Density

AAI: Aerosol Absorption

Index

UVAOD/VISAOD: UV/VIS

Aerosol Optical Depth

UVSSA: UV Single Scatter

Albedo

AOCH: Aerosol Optical

Centroid Height

Operational Timeline & Data Distribution

EARTHDATA

Search

Timeline based on March 2023 launch

- TEMPO commissioning phase from mid-June mid Sept 2023
- Nominal operation: ~6 months after launch

- Data will be **publicly available** via NASA Earthdata Search in netCDF4/HDF5 format.
- Latency of standard (Offline) products ~3-6 hours, except for ozone profile (~24-hour latency).
- □ Latency of ~2-3 hours for proposed near real-time (NRT) products.

Baseline mission length is 20 months with possible 10+ year lifetime depending on senior review

extensions.

TEMPO imagery will be available in Worldview

TEMPO data can be served directly through the EPA RSIG. https://www.epa.gov/hesc/remote-sensing-information-gateway 5

130°W

110°W

- (complete FoR ~1226 mirror steps)
- Enable more efficient distribution of TEMPO data, especially near realtime data

TEMPO Application Focus Areas

TEMPO Early Adopter Studies

☐ Observing NO₂ pollution inequality

 TEMPO will provide new insight into the identity and timing of emission sources and atmospheric drivers of pollution inequality at intra-urban scales.

□ Dust storm monitoring

Dust storms in North America are mostly short-lived, occurring a few hours before sunset. TEMPO will provide new monitoring capabilities of active dust emission areas.

☐ Short-term public health outcomes

 Hourly gaseous pollutants from TEMPO will enable acute exposure assessments in epidemiological studies of asthma exacerbations.

Green Paper here!

TEMPO data will enable new and enhanced health and air quality applications

TEMPO

Monitoring Precursor Gases with TEMPO

Aug. 23, 2013

TEMPO Proxy Data

TEMPO will observe the rapidly varying NO₂ columns within wildfire smoke plumes and across urban areas and traffic corridors.

Monitoring Ozone with TEMPO

- \square TEMPO will be able to track O₃ pollution in the tropospheric layer throughout the daytime.
- □ Proxy O₃ profile product demonstrates the sensitivity of the TEMPO instrument to O₃ pollution in the lower troposphere.
- \square TEMPO will provide new information on O₃ pollution within the layer of air where people live.

A Day in the Life of TEMPO

- ☐ TEMPO will perform standard (nominal) East-West hourly daytime scans consisting of ~1226 mirror steps across the Field of Regard (FoR) over Greater North America.
- ☐ Sub-hourly scans will also be performed:
 - 1) Optimized scans across the East and West during sunrise and sunset periods, respectively, when SZA is too high (> 80°) over portions of the FoR to complete a nominal hourly scan
 - Special operations for dedicated experiments over a subset of mirror steps / time intervals (e.g., <= 10 minutes)